Two- and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding

نویسندگان

  • Benjamin Ivorra
  • Juana L. Redondo
  • Juan G. Santiago
  • Pilar M. Ortigosa
  • Angel M. Ramos
چکیده

We present a design of a microfluidic mixer based on hydrodynamic focusing which is used to initiate the folding process (i.e., changes of the molecular structure) of a protein. The folding process is initiated by diluting (from 90% to 30%) the local denaturant concentration (initially 6 M GdCl solution) in a short time interval we refer to as mixing time. Our objective is to optimize this mixer by choosing suitable shape and flow conditions in order to minimize this mixing time. To this end, we first introduce a numerical model that enables computation of the mixing time of a mixer. This model is based on a finite element method approximation of the incompressible Navier-Stokes equations coupled with the convective diffusion equation. To reduce the computational time, this model is implemented in both full three-dimensional (3D) and simplified two-dimensional (2D) versions; and we analyze the ability of the 2D model to approximate the mixing time predicted by the 3D model. We found that the 2D model approximates the mixing time predicted by the 3D model with a mean error of about 15%, which is considered reasonable. Then, we define a mixer optimization problem considering the 2D model and solve it using a hybrid global optimization algorithm. In particular, we consider geometrical variables and injection velocities as optimization parameters. We achieve a design with a predicted mixing time of 0.10 μs, approximately one order of magnitude faster than previous mixer designs. This improvement can be in part explained by the new mixer geometry including an angle of π /5 radians at the channel intersection and injections velocities of 5.2 m s −1 and 0.038 m s −1 for the side and central inlet channels, respectively. Finally, we verify the robustness of the optimized result by performing a sensitivity analysis of its parameters considering the 3D model. During this study, the optimized mixer was demonstrated to be robust by exhibiting mixing time variations of the same order than the parameter ones. Thus, the obtained 2D design can be considered optimal also for the 3D model. C 2013 American Institute of Physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtomole mixer for microsecond kinetic studies of protein folding.

We have developed a microfluidic mixer for studying protein folding and other reactions with a mixing time of 8 mus and sample consumption of femtomoles. This device enables us to access conformational changes under conditions far from equilibrium and at previously inaccessible time scales. In this paper, we discuss the design and optimization of the mixer using modeling of convective diffusion...

متن کامل

A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics.

We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 μs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic fo...

متن کامل

A simple three - dimensional - focusing , continuous - flow mixer for the study of fast protein dynamics 3

We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 ms that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic fo...

متن کامل

Optimization of a microfluidic mixer for studying protein folding kinetics.

We have applied an optimization method in conjunction with numerical simulations to minimize the mixing time of a microfluidic mixer developed for protein folding studies. The optimization method uses a semideterministic algorithm to find the global minimum of the mixing time by varying the mixer geometry and flow conditions. We describe the minimization problem and constraints and give a brief...

متن کامل

Microsecond protein folding events revealed by time-resolved fluorescence resonance energy transfer in a microfluidic mixer.

We demonstrate the combination of the time-resolved fluorescence resonance energy transfer (tr-FRET) measurement and the ultrarapid hydrodynamic focusing microfluidic mixer. The combined technique is capable of probing the intermolecular distance change with temporal resolution at microsecond level and structural resolution at Angstrom level, and the use of two-photon excitation enables a broad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013